
ILKOM Jurnal Ilmiah Vol. 17, No. 2, August 2025, pp. 107-119
Accredited 2nd by RISTEKBRIN No. 10/C/C3/DT.05.00/2025; E-ISSN 2548-7779 | P-ISSN 2087-1716

 http://dx.doi.org/10.33096/ilkom.v17i2.2562.107-119

107

Enhancing Kubernetes-Based Microservices Deployment

Efficiency Through DevOps and GitOps
Irvan Maulana a,1,*; Rusydi Umar a,2; Anton Yudhanaa,3
aMagister Teknik Informatika, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
aMagister Teknik Informatika, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
aMagister Teknik Elektro, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
1vanzoelmaulana@gmail.com, 2 rusydi@mati.uad.ac.id, 3eyudhana@ee.uad.ac.id, 4prodi@mti.uad.ac.id

Article history: Received February 08, 2025; Revised April 22, 2025; Accepted July 08, 2025; Available online August 14, 2025.

Keywords: Kubernetes, DevOps, Microservices, GitOps, CI/CD

Introduction

In the ever-evolving digital era, organizations across sectors such as finance, manufacturing, and healthcare are

under pressure to deliver responsive, scalable, and reliable applications to meet growing business demands [1]. This

pressure has led to significant challenges in application deployment and management, particularly as systems become

more complex and distributed.

Recent research in cloud computing and application deployment has highlighted several critical challenges [2].

However, large-scale deployment and management of microservices applications bring huge challenges, such as

longer deployment time, service downtime instances, and losses in efficiency. Conventional deployment approaches

commonly experience limitations in ensuring service reliability and scalability against fluctuating workloads [3], [4].

Pham et al. identified that traditional deployment methods struggle with elastic scalability and resource optimization

in edge computing environments [5]. Similarly, Vayghan et al. found that managing the availability of stateful

applications in Kubernetes environments presents significant operational challenges, with manual deployment

methods often leading to increased downtime and reduced reliability [6].

Current studies have highlighted the significance of DevOps practices in resolving deployment inefficiencies.

DevOps facilitates CI/CD pipelines to achieve faster and more consistent deployment. However, the majority of

existing research has already significantly compared automation based on DevOps with traditional manual deployment

processes [7], [8]. Therefore, there is an urgent necessity to investigate deeper innovations beyond core DevOps

practices.

One such emerging approach is GitOps, whereby deployment activities are entirely managed by Git repositories

as a single source of truth, enabling more stringent automation, versioning, and rollback [9]. Another direction in this

vein is the integration of AI into DevOps pipelines (AI-Driven DevOps), which is also gaining traction, with

possibilities of dynamic pipeline optimization, predictive failure identification, and automated scaling decisions [10],

[11], [12].

Research Article Open Access (CC–BY-SA)

Abstract

An effective and resilient means to deploy microservices to Kubernetes is an ongoing challenge. This challenge becomes more

difficult with ever increasingly complex application architectures. This research explored a DevOps model based on GitOps

that integrates ArgoCD and GitLab CI/CD, as a means to create a more effective, resilient, and scalable deployment. Twelve

microservices that were deployed in a controlled experimentation format were used in a comparative approach to previous

deployment practices that only considered manual deployments. The results show an overall deployment time improvement of

40%. For the deployments that were executed incorrectly, ArgoCD ensures service availability leveraging its self-healing

capabilities. During the computation of each run we also experienced system performance in a sustained high-load environment.

Upon high demand, we experienced the desired autoscaling behavior requested, which resulted in higher service responsiveness.

In comparison to previous studies, this research considered statistical analysis, while also looking at an aspect of real-world

orchestration and networking efficiency while adopting Kubernetes. Altogether, this research gives organizations practical

advice on how they may optimize their deployment pipelines for efficient, scalable and resilient microservices.

https://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/1455

108 ILKOM Jurnal Ilmiah Vol. 17, No. 2, August 2025, pp.107-119 E-ISSN 2548-7779

Maulana, et. al. (Enhancing Kubernetes-Based Microservices Deployment Efficiency Through DevOps and GitOps)

Another key aspect that is usually neglected in deployment studies is DevSecOps, which integrates security

controls into the DevOps pipeline to make sure automation will not undermine application security, especially in

Kubernetes deployments [13], [14].

N. Vemuri et al. discuss in their study how AI can optimize DevOps workflows by automating repetitive tasks,

improving deployment accuracy, and accelerating the software release cycle [15]. Their research highlights the

potential of AI to reduce operational bottlenecks and enable faster, more reliable cloud-based deployments,

positioning AI-optimized DevOps as a critical evolution in modern software development practices.Turin et al.

demonstrated that predicting and optimizing resource consumption in Kubernetes container systems remains a

significant challenge, particularly when dealing with multiple services and varying workloads [16]. This complexity

is further emphasized by Zahoor et al., who identified security policy management as another critical concern in

Kubernetes deployments, highlighting the need for automated and consistent deployment processes [17].

Besides, the effect of deployment automation on network performance, latency, and service discovery is not yet

thoroughly examined. Service mesh technologies like Istio and Linkerd have been suggested as overlays for

Kubernetes cluster observability, fault tolerance, and traffic management [18], [19]. It is needed to know how

deployment patterns influence inter-service communication, network bottlenecks, and service resilience in order to

optimize microservices orchestration.

DevOps practices have shown promise in addressing these deployment challenges. Wiedemann et al. found that

integrating development and operations teams through DevOps practices can significantly improve deployment

efficiency [20]. Langerman and Leung further explored the impact of organizational structures on DevOps

implementation success [21].

To address deployment complexities, many organizations are adopting microservices architecture. This

architectural approach breaks down monolithic applications into smaller, independent service units, enabling more

flexible development, testing, and deployment [22], [23]. Waseem et al. conducted a systematic mapping study of

microservices architecture in DevOps environments, identifying gaps in current implementation approaches [24].

Faustino et al. further demonstrated that while microservices offer improved scalability and maintenance, they

introduce new challenges in deployment coordination and service orchestration [25].

This research addresses these gaps by exploring and analyzing optimal deployment strategies for microservices

applications within a Kubernetes cluster through a comprehensive DevOps approach. Building upon fundamental

Kubernetes concepts and recent practical implementations [26], [27], we aim to:

1. Evaluate the impact of DevOps implementation on deployment efficiency and reliability

2. Analyze error handling and recovery capabilities in automated versus manual deployment processes

3. Measure and compare deployment times and service availability across different deployment methods

Through this study, we aim to provide organizations with empirical evidence and practical guidance for optimizing

their microservices deployment processes.

Method

This study employs a quantitative research design with an experimental approach. This design is chosen because it

allows for direct testing of the effectiveness of implementing DevOps in optimizing the deployment of microservices

applications within Kubernetes clusters. Quantitative research focuses on the collection and analysis of numerical data

to measure variables and the relationships between them. In this study, numerical data related to deployment metrics

such as deployment time, error count, and deployment success rate will be collected. This data will then be statistically

analyzed to determine the effectiveness of DevOps implementation. The experiment involved deploying 12 different

services using both DevOps and manual deployment methods. Each service was deployed ten times to capture a range

of deployment times. The services included Adservice, Cartservice, Checkoutservice, Currencyservice, Emailservice,

Frontend, Loadgenerator, Paymentservice, Productcatalogservice, Recommendationservice, Shippingservice, and

Shoppingassistantservice. The average deployment times for each service were calculated and compared.

A. Infrastructure

The experiments were conducted using a private on-premises Kubernetes cluster deployed across six nodes. The

full specifications of the system used are presented in Table 1. This configuration reflects a moderately distributed

cluster suitable for real-world testing in development or pre-production environments. Each node was connected over

a local area network and orchestrated by a kubeadm-initialized Kubernetes setup, with containerd as the container

runtime.

E-ISSN 2548-7779 ILKOM Jurnal Ilmiah Vol. 17, No. 2, August 2025, pp.107-119 109

Maulana, et. al. (Enhancing Kubernetes-Based Microservices Deployment Efficiency Through DevOps and GitOps)

Table 1. Kubernetes Cluster Nodes Spesifications

No Hostname Spesifications Operating System Role

1 master 4cpu, 6Gi Memory Ubuntu 22.04 Master node (control plane)

2 worker1 4cpu, 8Gi Memory Ubuntu 22.04 Worker node

3 worker2 4cpu, 6Gi Memory Ubuntu 22.04 Worker node

4 worker3 6cpu, 12Gi Memory Ubuntu 22.04 Worker node

5 worker4 6cpu, 16Gi Memory Ubuntu 22.04 Worker node

6 worker5 8cpu, 24Gi Memory Ubuntu 22.04 Worker node

The structure of the cluster is illustrated in Figure 1. The control plane manages scheduling, API access, and the

state of the cluster, and all workloads run in the worker nodes [28]. To expose microservices outside, Istio was deployed.

Specifically, the Istio Ingress Gateway was utilized to route traffic to particular VirtualService definitions for two

primary categories of microservices. This made external HTTP access and DNS-based routing to test endpoints possible

[29], [30]. It is noteworthy that even subsequent to the Istio installation, the advanced features of service mesh such as

mutual TLS, traffic shifting, circuit breaking, and distributed tracing were not utilized. The research targets deployment

and availability concerns more than internal network configuration or fine-grained observability [31].

Figure 1. Kubernetes Architecthure

110 ILKOM Jurnal Ilmiah Vol. 17, No. 2, August 2025, pp.107-119 E-ISSN 2548-7779

Maulana, et. al. (Enhancing Kubernetes-Based Microservices Deployment Efficiency Through DevOps and GitOps)

B. Deployment Models Comparission

The experimental approach involves manipulating the independent variable (DevOps implementation) and

measuring its impact on the dependent variable (deployment metrics). In this research, two groups will be formed: a

control group (without DevOps) and an experimental group (with DevOps). The differences in deployment outcomes

between these two groups will be analyzed to assess the effectiveness of DevOps implementation.

• Manual Deployment (Baseline Group)

In the traditional workflow shown in Figure 2, deployment process involves several manual steps: image

building, pushing to a container registry, updating manifests, and deploying Kubernetes manifests with

kubectl. This process is very operator-dependent, which can be a source of delays as well as potential human

error.

Figure 2. Manual deployment

• GitOps-based DevOps Deployment (Experimental Cohort)

Depicted in Figure 3, this end-to-end automated process is GitOps-driven. Developers commit application

code and deployment manifests to GitLab. This triggers a GitLab CI/CD pipeline that:

1. Creates Docker images.

2. Pushes them to the GitLab Container Registry.

3. Updates the Kubernetes manifests located in the Git repository.

ArgoCD monitors the Git repository in real time, identifies differences, and automatically synchronizes the

desired state to the cluster. ArgoCD self-healing ensures configuration drift is fixed and failed deployments

don't affect service right away. This deployment is based on GitOps principles: declarative configuration,

automated reconciliation, version control, and observability [32], [33].

Figure 3. DevOps deployment

E-ISSN 2548-7779 ILKOM Jurnal Ilmiah Vol. 17, No. 2, August 2025, pp.107-119 111

Maulana, et. al. (Enhancing Kubernetes-Based Microservices Deployment Efficiency Through DevOps and GitOps)

In modern IT environments, optimizing the deployment of microservices applications in Kubernetes clusters by

adopting DevOps practices is crucial for ensuring the continuous availability of critical services [34]. High-availability

(HA) infrastructure solutions and the application of DevOps principles are designed to achieve this by employing

redundant components and failover mechanisms to prevent service downtime [35]. Adopting DevOps for the

deployment of microservices applications with a focus on continuous principles as we can see in Figure 3, begins with

developers committing and pushing code to a GitLab repository. GitLab then triggers a webhook that automatically

initiates the CI/CD pipeline whenever there are changes in the repository. Within the CI/CD pipeline, the application is

packaged into Docker images and these images are pushed to a Gitlab docker image registry [36]. Subsequently,

ArgoCD identifies changes in the Kubernetes manifest within the GitLab repository and updates the deployment in the

Kubernetes cluster using the new Docker images that were pushed by GitLab CI, all that process running automatically

[37].

After all these processes, monitoring the running microservices applications in the Kubernetes cluster is essential to

gather feedback and implement necessary updates. This cycle continues perpetually.

In contrast, traditional methods handle these processes manually. In Figure 2, the developer's role typically ends at

committing and pushing code to the GitLab repository or pushing Docker images to the gitlab registry, with subsequent

steps managed by the operations team. This entire process must be executed manually, which is inefficient, time-

consuming, and prone to human error (potentially impacting the stability of the overall system).

Results and Discussion

This section analyzes and comparing the results of two primary deployment techniques: manual deployment and

DevOps deployment as orchestrated with GitOps practices. The comparison evaluates parameters such as deployment

time, error handling, and service uptime. While the scope of this research does not include large-scale dynamic load

testing or detailed network traffic analysis, the findings offer relevant information regarding deployment trends and

system stability in controlled environments.

A. Deployment Time

This research was conducted by 12 microservices with DevOps and manual deployment 10 times to view the

different deployment time between DevOps and manual deployment. The detailed experiment available at Table 2 .

Table 2. Avarange Deployment Time

Service
DevOps Avg Time

(s)

Manual Avg Time

(s)

Overall average
Standard Deviation

(seconds)

DevOps Manual DevOps Manual

Adservice 777.8 932.8

522.525 872.2 150.35 61.39

Cartservice 784.8 830

Checkoutservice 498.1 774.4

Currencyservice 484.3 864

Emailservice 556.3 817.5

Frontend 520.7 919.4

Loadgenerator 498.6 933.8

Paymentservice 243.9 839.1

Productcatalogservice 602.5 976.5

Recommendationservice 443.5 828.6

Shippingservice 506.5 841.3

Shoppingassistantservice 353.3 909

112 ILKOM Jurnal Ilmiah Vol. 17, No. 2, August 2025, pp.107-119 E-ISSN 2548-7779

Maulana, et. al. (Enhancing Kubernetes-Based Microservices Deployment Efficiency Through DevOps and GitOps)

Figure 4. Deployment time comparission

B. Statistical Analysis

To evaluate whether the difference in deployment times between manual and DevOps methods is statistically
significant, a two-sample t-test was conducted assuming equal variances. Each method was tested across 12 services (𝑛
= 12), and the average deployment times were previously summarized in Table 2.

Two-Sample t-Test with :

Hypotheses

Null Hypotheses (𝐻0)

𝜇1 = 𝜇2

(No significant difference in mean deployment time)

Alternative Hypothesis (𝐻1)

𝜇1 ≠ 𝜇2

(There is a significant difference)

Pooled Standard Deviation (𝑠𝑝) = 36.29

Since we are assuming that both groups have equal population variances, we need to compute the pooled standard
deviation, which combines the variability of both groups into a single estimate. This is especially useful when the
sample sizes are equal, as in this case.

𝑠𝑝 = √
(𝑛1 − 1)𝑠1

2 + (𝑛1 − 1)𝑠2
2

𝑛1 + 𝑛2 − 2

T-Statistic Calculation (𝑡) = −23.62

Where

• 𝓍̅1 and 𝓍̅2 are the sample means

• 𝑠𝑝 is the pooled standard deviation

• 𝓃 is the number of samples per group.

The t-statistic measures the size of the difference relative to the variation in the sample data. It is calculated using the
formula below:

𝑡 =
𝓍̅1 − 𝓍̅2

𝑠𝑝 ∙ √
2
𝑛

777.8 784.8

498.1 484.3
556.3 520.7 498.6

243.9

602.5

443.5
506.5

353.3

932.8
830 774.4

864 817.5
919.4 933.8

839.1
976.5

828.6 841.3
909

0

200

400

600

800

1000

1200

Ti
m

e
(s

)

Services

DevOps Avg Time (s) Manual Avg Time (s)

E-ISSN 2548-7779 ILKOM Jurnal Ilmiah Vol. 17, No. 2, August 2025, pp.107-119 113

Maulana, et. al. (Enhancing Kubernetes-Based Microservices Deployment Efficiency Through DevOps and GitOps)

Degrees of Freedom (𝑑𝑓) = 22, with this formula

𝑑𝑓 = 𝑛1 + 𝑛2 − 2

p-value < 0.00001, using a statistical software (SPSS), a t-statistic of -23.62 with 22 degrees of freedom results in a p-

value < 0.00001.

Since this p-value is far below the conventional alpha level of 0.05, we reject the null hypothesis. This indicates a

statistically significant difference between the two deployment methods.

The measured deployment durations indicate a clear advantage for the automated DevOps pipeline. Across twelve

trials each, the CI/CD-driven DevOps process averaged 522.5 s per deployment versus 872.2 s for manual deployment

roughly a 40% reduction in time. A two-sample t-test (equal variances, 𝓃 = 12 per group) confirms this difference is

highly significant. The pooled standard deviation (36.29),combined with a t-statistic of −23.62and p-value smaller than

0.001 confirm that the difference in avarage deployment time between the DevOps and manual methods is statistically

significant. This substantial result confirms that the automated DevOps pipeline offers a consistent and measurable

improvement over manual processes. The low variability and high significance level strengthen the conclusion that

DevOps practices not only reduce deployment time but also contribute to a more reliable and repeatable deployment

workflow, which is crucial for maintaining service availability in microservices-based architectures. Indeed, prior work

has similarly found that introducing a CI/CD pipeline significantly reduced the deployment time compared to manual

deployment.

This magnitude of improvement is consistent with the general understanding that DevOps automation accelerates

delivery. In manual deployments each step (building, testing, container creation, etc.) must be performed by hand,

making the process slow and error-prone. In contrast, a CI/CD system like gitlab-ci or Jenkins can execute many steps

automatically and in parallel maximizing time efficiency. Our result echoes studies reporting dramatic time savings (on

the order of tens of percent) from automated pipelines. We note that AI-driven CI/CD tools are emerging as well, for

example, pipelines that use machine learning to predict failures or optimize test order can further speed deployments

but evaluation of such approaches is beyond this paper’s scope.

The analysis reveals that DevOps deployment methods significantly reduce the average deployment time for all

services tested. This reduction is particularly notable in services such as Paymentservice and Productcatalogservice,

where the time savings exceed several hundred seconds. The automated processes inherent in DevOps likely contribute

to these efficiencies by minimizing human error and increasing consistency across deployments.

These findings should be interpreted in light of the study’s limitations. First, the tests did not include high-load or

stress conditions; as experts emphasize, testing the scalability of a micro-service is very critical to ensure that

deployments remain fast under increased workload. Second, we measured only end-to-end deployment time and did

not collect lower-level metrics such as container startup latency or data transfer overhead. In a real microservices

environment, each service-to-service “hop” adds latency, and cumulative inter-service communication can introduce

nontrivial network overhead and bottlenecks. We also did not isolate the impact of inter-service messaging patterns on

performance. Accounting for these factors (heavy load, latency, and communication overhead) in future experiments

would provide a more complete view of deployment performance.

C. Error handling and service availability

In this study, we collected the error handling and service availability from DevOps deployment and manual

deployment within wrong Kubernetes manifest with removing the imagePullSecret in kuberentes manifest. The wrong

Kubernetes manifest can be seen in Figure 5.

Figure 5. Kubernetes manifest without pullSecret

This experiment made some service with wrong Kubernetes manifest wich not including the imagePullSecret wich

is the credential for authenticating with the gitlab images registry as we can see in fig 4 to see how DevOps deployment

and manual deployment handle the error. The DevOps deployment using ArgoCD with application configuration can

be seen in Fig 6 and the service availability in DevOps deployment can be seen in Figure 6.

114 ILKOM Jurnal Ilmiah Vol. 17, No. 2, August 2025, pp.107-119 E-ISSN 2548-7779

Maulana, et. al. (Enhancing Kubernetes-Based Microservices Deployment Efficiency Through DevOps and GitOps)

Figure 6. Service availability with DevOps deployment

Figure 7. Argocd application configuration

The DevOps deployment method using ArgoCD as Continous Deployment and uses the Git repository as the

source of truth to determine the desired state of the application in Kubernetes cluster event he configuration was

wrong, ArgoCD will not instantly delete the old pod with selfHeal feature as we described in Figure 6. In summary,

argocd can minimalize the downtime for application, because argocd will make sure the new deployment running

properly before taking out or delete old deployment. The pod will not instantly replace with new pod , summary,

the service was still available as we describe in Figure 7.

Figure 8. Service availability without DevOps deployment

On the other hand, manual deployment not verifying the Kubernetes manifest, with this experiment, the pod

will not avaibale because the pod can’t pull the new images because don’t have authentication credential. Summary

this can leading to service downtime with new deployment if the pod did not running properly as we describe in

Figure 8.

E-ISSN 2548-7779 ILKOM Jurnal Ilmiah Vol. 17, No. 2, August 2025, pp.107-119 115

Maulana, et. al. (Enhancing Kubernetes-Based Microservices Deployment Efficiency Through DevOps and GitOps)

D. Load Test and Cluster Behavior under Dynamic Workload

To complement the deployment time analysis, we executed a load testing scenario to simulate production-level

high traffic and exercise dynamic scaling behavior in the Kubernetes environment. The test targeted the

productcataloge service endpoint /product/0PUK6V6EV0, simulating product detail fetch under maximum

concurrent access. The test provided insight into runtime behavior of the Kubernetes cluster and exercised the

deployment infrastructure's tolerance to sustained pressure.

The load was simulated using Apache JMeter, generating 7,712 samples of HTTP requests over 10 minutes.

The mean response time of 81,860 milliseconds was at a minimum of 68 milliseconds and a maximum of 675,480

milliseconds, as can be seen from Table 3. The standard deviation of 56583,29 milliseconds was extremely high,

indicating extremely high variation in response times. The system achieved a throughput of 11.3 requests per second

and an error rate of 27.17%, which is most likely caused by resource saturation occurring at periods of peak latency.

Table 3. Summary Report

Label Samples Average Min Max Std. Dev Error% Throughput
Received

KB/sec

Sent

KB/sec

Avg.

Bytes

HTTP

Request
7712 81860 68 675.480 56583.29 27.17 11.3/sec 85.96 1.93 7778.3

TOTAL 7712 81860 68 675.480 56583.29 27.17 11.3/sec 85.96 1.93 7778.3

This performance distribution is visualized in Figure 9, which illustrates a progressive rise in response time

during the early phase of the test, peaking at ~140 seconds, followed by a mix of sustained latency and temporary

drops. These drops correspond with temporary recovery points, possibly due to internal load distribution or cached

responses.

Figure 9. Response Time

During the load testing phase of the product catalog service, we monitored traffic and CPU and memory

utilization using Grafana in real-time at the pod level. Figure 10 illustrates the immediate change in memory usage

that correlates to sustained traffic. In the first two minutes, memory usage was consistently above 80%, so the

original pod utilization exceeded memory limits configured for a Horizontal Pod Autoscaler (HPA), which triggered

a configured Kubernetes cluster scaling policy, resulting in the automatic creation of a new pod running the product

catalog service.

This activity supports our original hypothesis that autoscaling is providing elasticity in that it was

accommodating service levels of availability for the dynamic workloads it was serving. When two product catalog

service pods were instantiated, upon arrival rate, the traffic was being satisfied by two pods and the load was

distributed more efficiently without service degradation under added traffic.

As this example demonstrates, resource monitoring at runtime and autoscaling policy offers an important

mechanism for elasticity and fault tolerance in microservices-enabled architectures. In addition, this example

highlights the importance of selecting resource limits thresholds in order to make sure they are aligned to your

workloads, such that autoscaling occurs with maximum influence and least overlap, respectively.

116 ILKOM Jurnal Ilmiah Vol. 17, No. 2, August 2025, pp.107-119 E-ISSN 2548-7779

Maulana, et. al. (Enhancing Kubernetes-Based Microservices Deployment Efficiency Through DevOps and GitOps)

Figure 10. Grafana pod utilizations

Together, these results reflect the service's performance degradation under sustained load without autoscaling

support. In contrast to earlier tests involving the frontend service, where Horizontal Pod Autoscaler (HPA) was

triggered based on memory thresholds, the productcatalogservice instance did not trigger scaling events. This

suggests either more conservative HPA configuration, insufficient resource limits, or a need for revised threshold

tuning.

From a deployment reliability perspective, these results highlight the importance of not only automated

deployment but also runtime observability and scaling policies. While the system remained operational, the latency

spikes and error rates suggest that autoscaling policies must be carefully tailored to each microservice’s expected

load pattern and criticality.

Future iterations of this experiment should include:

1. Application-specific HPA tuning based on both memory and CPU utilization.

2. Load redistribution policies or circuit-breaking rules.

3. Integration with service mesh observability tools (e.g., Istio telemetry, Kiali, or Jaeger) to trace failure

origins and latencies at service hop-level resolution.

These findings underscore that although GitOps-based deployment pipelines provide operational efficiency,

runtime performance assurance still depends heavily on post-deployment observability and scaling configuration.

Conclusion

The results of this research show that the implementation of DevOps practices to deploy microservices applications

to uniformly orchestrated kubernetes clusters increases the deployment efficiency, reliability, and operational

resiliency of those applications. The quantitative comparison between DevOps based automation and traditional

manual practices showed statistically significant deployment efficiencies yielded average deployment efficiencies of

522.5 seconds (DevOps automation) and 872.2 seconds (manual methods). These efficiencies will allow organizations

to reduce release cycles and human error while maintaining service continuity. When considering availability and

fault tolerance, through the use of tools like ArgoCD, DevOps including self-healing functionality made it possible to

maintain service uptime even with misconfigured deployments, whereas manual methods led to pod errors and service

disruption. The automated rollback and verification capabilities in DevOps pipelines created a more flexible and

reliable application development life cycle.

Considering the scalability and networking perspective involves load-testing under dynamic workload features,

DevOps deployments combined well with the auto-scaling features of kubernetes and allowed for better load balancing

of requests and service responsiveness, while only utilizing Istios Ingress Gateway level (not full-service mesh)

features, the system demonstrated better orchestration behavior in under increasing traffic. The autoscaling events

were triggered and occurred as expected and allowed the pods to autorecover when the requests exceeded memory

usage, allowing the pod forecasted performance (reduced request latency spikes). In conclusion, as implied by the

self-healing aspects of our system, DevOps contributes to an optimum orchestrated experience.

For industrial adoption, this research affirms that organizations can benefit from adopting GitOps-driven DevOps

workflows to achieve faster deployment cycles, minimize operational risks, and scale services predictably. By aligning

infrastructure as code, continuous deployment, and observability, companies can streamline their development-to-

deployment processes while improving infrastructure responsiveness to traffic surges and failures. Organizations

seeking rapid innovation and operational agility, particularly in industries reliant on high availability such as fintech,

healthtech, and e-commerce are encouraged to adopt these practices.

E-ISSN 2548-7779 ILKOM Jurnal Ilmiah Vol. 17, No. 2, August 2025, pp.107-119 117

Maulana, et. al. (Enhancing Kubernetes-Based Microservices Deployment Efficiency Through DevOps and GitOps)

This research is limited in scope to the evaluation of a single DevOps implementation using GitOps and ArgoCD.

Alternative paradigms such as AI-driven DevOps, GitOps with full service mesh capabilities, or hybrid cloud multi-

cluster deployment strategies were not explored. Furthermore, security aspects (DevSecOps) and cost-efficiency

evaluations were excluded from the experiments, despite their increasing relevance in production-grade environments.

References

[1] S. Pallewatta, V. Kostakos, and R. Buyya, “MicroFog: A framework for scalable placement of microservices-

based IoT applications in federated Fog environments,” Journal of Systems and Software, vol. 209, Mar. 2024,

doi: 10.1016/j.jss.2023.111910.

[2] S. Alzide, “Cloud Computing: Evolution, Challenges, and Future Prospects,” Journal of Information

Technology, Cybersecurity, and Artificial Intelligence, vol. 1, no. 1, pp. 52–63, Dec. 2024, doi:

10.70715/jitcai.2024.v1.i1.007.

[3] K. Vishnivetskii, “Dynamic Scaling and Performance Optimization for Microservices using Kubernetes,” Asian

Journal of Research in Computer Science, vol. 18, no. 3, pp. 213–220, Feb. 2025, doi:

10.9734/ajrcos/2025/v18i3587.

[4] S. Hassan, R. Bahsoon, and R. Buyya, “Systematic scalability analysis for microservices granularity adaptation

design decisions,” Softw Pract Exp, vol. 52, Jan. 2022, doi: 10.1002/spe.3069.

[5] K. Q. Pham and T. Kim, “Elastic Federated Learning with Kubernetes Vertical Pod Autoscaler for edge

computing,” Future Generation Computer Systems, vol. 158, pp. 501–515, Sep. 2024, doi:

10.1016/j.future.2024.04.047.

[6] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “A Kubernetes controller for managing the availability

of elastic microservice based stateful applications,” Journal of Systems and Software, vol. 175, May 2021, doi:

10.1016/j.jss.2021.110924.

[7] S. Rama Krishna, J. Srinivasa Rao, Y. Venkata Durga, L. Prem Venkatesh, and P. Sridhar, “Enhancing Software

Deployment Efficiency: A Comparative Analysis of Agile Application Deployment Using CI/CD Pipelines,”

2024.

[8] G. Hyun, J. Oak, D. Kim, and K. Kim, “The Impact of an Automation System Built with Jenkins on the

Efficiency of Container-Based System Deployment,” Sensors, vol. 24, no. 18, Sep. 2024, doi:

10.3390/s24186002.

[9] K. Sakinala, “Advancements in Devops: The Role Of Gitops In Modern Infrastructure Management,”

International Journal Of Information Technology And Management Information Systems, vol. 16, no. 1, pp.

632–646, Feb. 2025, doi: 10.34218/IJITMIS_16_01_045.

[10] A. Kumar, M. Nadeem, and M. Shameem, “Machine learning based predictive modeling to effectively

implement DevOps practices in software organizations,” Automated Software Engineering, vol. 30, Jul. 2023,

doi: 10.1007/s10515-023-00388-8.

[11] V. M. Tamanampudi, “Distributed Learning and Broad Applications in Scientific Research Automating CI/CD

Pipelines with Machine Learning Algorithms: Optimizing Build and Deployment Processes in DevOps

Ecosystems,” 2019.

[12] N. Vemuri, V. Manoj Tatikonda, and N. Thaneeru, “Integrating Deep Learning with DevOps for Enhanced

Predictive Maintenance in the Manufacturing Industry,” 2022.

[13] S. Ugale and A. Potgantwar, “Container Security in Cloud Environments: A Comprehensive Analysis and

Future Directions for DevSecOps †,” Engineering Proceedings, vol. 59, no. 1, 2023, doi:

10.3390/engproc2023059057.

[14] L. Prates and R. Pereira, “DevSecOps practices and tools,” Int J Inf Secur, vol. 24, no. 1, Feb. 2025, doi:

10.1007/s10207-024-00914-z.

[15] N. Vemuri, N. Thaneeru, and V. M. Tatikonda, “AI-Optimized DevOps for Streamlined Cloud CI/CD,” 2024.

[Online]. Available: www.ijisrt.com504

http://doi.org/10.1016/j.jss.2023.111910
http://doi.org/10.70715/jitcai.2024.v1.i1.007
http://doi.org/10.9734/ajrcos/2025/v18i3587
http://doi.org/10.1002/spe.3069
http://doi.org/10.1016/j.future.2024.04.047
http://doi.org/10.1016/j.jss.2021.110924
http://doi.org/10.3390/s24186002
http://doi.org/10.34218/IJITMIS_16_01_045
http://doi.org/10.1007/s10515-023-00388-8
http://doi.org/10.3390/engproc2023059057
http://doi.org/10.1007/s10207-024-00914-z

118 ILKOM Jurnal Ilmiah Vol. 17, No. 2, August 2025, pp.107-119 E-ISSN 2548-7779

Maulana, et. al. (Enhancing Kubernetes-Based Microservices Deployment Efficiency Through DevOps and GitOps)

[16] G. Turin, A. Borgarelli, S. Donetti, F. Damiani, E. B. Johnsen, and S. L. Tapia Tarifa, “Predicting resource

consumption of Kubernetes container systems using resource models,” Journal of Systems and Software, vol.

203, Sep. 2023, doi: 10.1016/j.jss.2023.111750.

[17] E. Zahoor, M. Chaudhary, S. Akhtar, and O. Perrin, “A formal approach for the identification of redundant

authorization policies in Kubernetes,” Comput Secur, vol. 135, Dec. 2023, doi: 10.1016/j.cose.2023.103473.

[18] M. R. Saleh Sedghpour, C. Klein, and J. Tordsson, “An Empirical Study of Service Mesh Traffic Management

Policies for Microservices,” in ICPE 2022 - Proceedings of the 2022 ACM/SPEC International Conference on

Performance Engineering, Association for Computing Machinery, Inc, Apr. 2022, pp. 17–27. doi:

10.1145/3489525.3511686.

[19] K. V. Palavesam, M. V. Krishnamoorthy, and A. S M, “A Comparative Study of Service Mesh Implementations

in Kubernetes for Multi-cluster Management,” Journal of Advances in Mathematics and Computer Science, vol.

40, no. 1, pp. 1–16, Jan. 2025, doi: 10.9734/jamcs/2025/v40i11958.

[20] A. Wiedemann, M. Wiesche, H. Gewald, and H. Krcmar, “Integrating development and operations teams: A

control approach for DevOps,” Information and Organization, vol. 33, no. 3, Sep. 2023, doi:

10.1016/j.infoandorg.2023.100474.

[21] J. Langerman and W. S. Leung, “The effect of outsourcing and insourcing on Agile and DevOps,” Journal of

Information Technology Teaching Cases, 2023, doi: 10.1177/20438869231176841.

[22] A. Raharjo, P. Andyartha, W. Wijaya, Y. Purwananto, D. Purwitasari, and N. Juniarta, Reliability Evaluation

of Microservices and Monolithic Architectures. 2022. doi: 10.1109/CENIM56801.2022.10037281.

[23] A. Nicolas-Plata, J. L. Gonzalez-Compean, and V. J. Sosa-Sosa, “A service mesh approach to integrate

processing patterns into microservices applications,” Cluster Comput, vol. 27, no. 6, pp. 7417–7438, Sep. 2024,

doi: 10.1007/s10586-024-04342-5.

[24] M. Waseem, P. Liang, and M. Shahin, “A Systematic Mapping Study on Microservices Architecture in

DevOps,” Journal of Systems and Software, vol. 170, Dec. 2020, doi: 10.1016/j.jss.2020.110798.

[25] D. Faustino, N. Gonçalves, M. Portela, and A. Rito Silva, “Stepwise migration of a monolith to a microservice

architecture: Performance and migration effort evaluation,” Performance Evaluation, vol. 164, May 2024, doi:

10.1016/j.peva.2024.102411.

[26] S. C and M. S, Security Aware Resource Management Framework (SARMF) for Edge-Cloud Computing. 2023.

doi: 10.1109/ICOEI56765.2023.10125845.

[27] J. B. Adelusi, “Kubernetes for Microservices Deployment Across Cloud Platforms.” .

[28] D. D. Vu, M. N. Tran, and Y. Kim, “Predictive Hybrid Autoscaling for Containerized Applications,” IEEE

Access, vol. 10, pp. 109768–109778, 2022, doi: 10.1109/ACCESS.2022.3214985.

[29] P. Priya Patharlagadda, “Kubernetes Traffic Management using Istio,” Journal of Media & Management, pp.

1–4, Feb. 2022, doi: 10.47363/JMM/2022(4)E101.

[30] M. Chigurupati and A. Jagtap, “Enhancing Microservice Resiliency and Reliability on Kubernetes with Istio:

A Site Reliability Engineering Perspective,” International Journal of Computer Trends and Technology, vol.

72, no. 11, pp. 17–22, Nov. 2024, doi: 10.14445/22312803/IJCTT-V72I11P103.

[31] A. Malhotra, A. Elsayed, R. Torres, S. Venkatraman, and A. S. Kaul, “Date of publication xxxx 00, 0000, date

of current version xxxx 00, 0000. Evaluate Canary Deployment Techniques using Kubernetes, Istio and

Liquibase for Cloud Native Enterprise Applications to Achieve Zero Downtime for Continuous Deployments,”

no. 1, 2017, doi: 10.1109/ACCESS.2024.07512.

[32] K. Sakinala, “Advancements in Devops: The Role of Gitops in Modern Infrastructure Management,”

International Journal Of Information Technology And Management Information Systems, vol. 16, pp. 632–646,

Feb. 2025, doi: 10.34218/IJITMIS_16_01_045.

[33] Ramadoni, E. Utami, and H. al Fatta, Analysis on the Use of Declarative and Pull-based Deployment Models

on GitOps Using Argo CD. 2021. doi: 10.1109/ICOIACT53268.2021.9563984.

[34] B. Chandra Vadde and V. B. Munagandla, “Cloud-Native DevOps: Leveraging Microservices and Kubernetes

for Scalable Infrastructure,” 2024.

http://doi.org/10.1016/j.jss.2023.111750
http://doi.org/10.1016/j.cose.2023.103473
http://doi.org/10.1145/3489525.3511686
http://doi.org/10.9734/jamcs/2025/v40i11958
http://doi.org/10.1016/j.infoandorg.2023.100474
http://doi.org/10.1177/20438869231176841
http://doi.org/10.1109/CENIM56801.2022.10037281
http://doi.org/10.1007/s10586-024-04342-5
http://doi.org/10.1016/j.jss.2020.110798
http://doi.org/10.1016/j.peva.2024.102411
http://doi.org/10.1109/ICOEI56765.2023.10125845
http://doi.org/10.1109/ACCESS.2022.3214985
http://doi.org/10.47363/JMM/2022(4)E101
http://doi.org/10.14445/22312803/IJCTT-V72I11P103
http://doi.org/10.1109/ACCESS.2024.07512
http://doi.org/10.34218/IJITMIS_16_01_045
http://doi.org/10.34218/IJITMIS_16_01_045

E-ISSN 2548-7779 ILKOM Jurnal Ilmiah Vol. 17, No. 2, August 2025, pp.107-119 119

Maulana, et. al. (Enhancing Kubernetes-Based Microservices Deployment Efficiency Through DevOps and GitOps)

[35] P. Somasekaram, R. Calinescu, and R. Buyya, “High-Availability Clusters: A Taxonomy, Survey, and Future

Directions”, doi: 10.48550/arXiv.2109.15139.

[36] A. Singh, V. Singh, and A. Aggarwal, “Improving Business Deliveries for Micro-services-based Systems using

CI/CD and Jenkins,” Journal of Mines Metals and Fuels, Dec. 2023, doi: 10.18311/jmmf/2023/33936.

[37] T. Kormanik and J. Poruban, “Exploring GitOps: An Approach to Cloud Cluster System Deployment,” in

ICETA 2023 - 21st Year of International Conference on Emerging eLearning Technologies and Applications,

Proceedings, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 318–323. doi:

10.1109/ICETA61311.2023.10344182.

http://doi.org/10.48550/arXiv.2109.15139
http://doi.org/10.18311/jmmf/2023/33936
http://doi.org/10.1109/ICETA61311.2023.10344182

