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Introduction  

In the ever-evolving digital era, organizations across sectors such as finance, manufacturing, and healthcare are 

under pressure to deliver responsive, scalable, and reliable applications to meet growing business demands [1]. This 

pressure has led to significant challenges in application deployment and management, particularly as systems become 

more complex and distributed. 

Recent research in cloud computing and application deployment has highlighted several critical challenges [2]. 

However, large-scale deployment and management of microservices applications bring huge challenges, such as 

longer deployment time, service downtime instances, and losses in efficiency. Conventional deployment approaches 

commonly experience limitations in ensuring service reliability and scalability against fluctuating workloads [3], [4]. 

Pham et al. identified that traditional deployment methods struggle with elastic scalability and resource optimization 

in edge computing environments [5]. Similarly, Vayghan et al. found that managing the availability of stateful 

applications in Kubernetes environments presents significant operational challenges, with manual deployment 

methods often leading to increased downtime and reduced reliability [6]. 

Current studies have highlighted the significance of DevOps practices in resolving deployment inefficiencies. 

DevOps facilitates CI/CD pipelines to achieve faster and more consistent deployment. However, the majority of 

existing research has already significantly compared automation based on DevOps with traditional manual deployment 

processes [7], [8]. Therefore, there is an urgent necessity to investigate deeper innovations beyond core DevOps 

practices. 

One such emerging approach is GitOps, whereby deployment activities are entirely managed by Git repositories 

as a single source of truth, enabling more stringent automation, versioning, and rollback [9]. Another direction in this 

vein is the integration of AI into DevOps pipelines (AI-Driven DevOps), which is also gaining traction, with 

possibilities of dynamic pipeline optimization, predictive failure identification, and automated scaling decisions [10], 

[11], [12].  

Research Article       Open Access (CC–BY-SA) 

Abstract 

An effective and resilient means to deploy microservices to Kubernetes is an ongoing challenge. This challenge becomes more 

difficult with ever increasingly complex application architectures. This research explored a DevOps model based on GitOps 

that integrates ArgoCD and GitLab CI/CD, as a means to create a more effective, resilient, and scalable deployment. Twelve 

microservices that were deployed in a controlled experimentation format were used in a comparative approach to previous 

deployment practices that only considered manual deployments. The results show an overall deployment time improvement of 

40%. For the deployments that were executed incorrectly, ArgoCD ensures service availability leveraging its self-healing 

capabilities. During the computation of each run we also experienced system performance in a sustained high-load environment. 

Upon high demand, we experienced the desired autoscaling behavior requested, which resulted in higher service responsiveness. 

In comparison to previous studies, this research considered statistical analysis, while also looking at an aspect of real-world 

orchestration and networking efficiency while adopting Kubernetes. Altogether, this research gives organizations practical 

advice on how they may optimize their deployment pipelines for efficient, scalable and resilient microservices. 

https://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/1455
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Another key aspect that is usually neglected in deployment studies is DevSecOps, which integrates security 

controls into the DevOps pipeline to make sure automation will not undermine application security, especially in 

Kubernetes deployments [13], [14]. 

N. Vemuri et al. discuss in their study how AI can optimize DevOps workflows by automating repetitive tasks, 

improving deployment accuracy, and accelerating the software release cycle [15]. Their research highlights the 

potential of AI to reduce operational bottlenecks and enable faster, more reliable cloud-based deployments, 

positioning AI-optimized DevOps as a critical evolution in modern software development practices.Turin et al. 

demonstrated that predicting and optimizing resource consumption in Kubernetes container systems remains a 

significant challenge, particularly when dealing with multiple services and varying workloads [16]. This complexity 

is further emphasized by Zahoor et al., who identified security policy management as another critical concern in 

Kubernetes deployments, highlighting the need for automated and consistent deployment processes [17]. 

Besides, the effect of deployment automation on network performance, latency, and service discovery is not yet 

thoroughly examined. Service mesh technologies like Istio and Linkerd have been suggested as overlays for 

Kubernetes cluster observability, fault tolerance, and traffic management [18], [19]. It is needed to know how 

deployment patterns influence inter-service communication, network bottlenecks, and service resilience in order to 

optimize microservices orchestration. 

DevOps practices have shown promise in addressing these deployment challenges. Wiedemann et al. found that 

integrating development and operations teams through DevOps practices can significantly improve deployment 

efficiency [20]. Langerman and Leung further explored the impact of organizational structures on DevOps 

implementation success [21]. 

To address deployment complexities, many organizations are adopting microservices architecture. This 

architectural approach breaks down monolithic applications into smaller, independent service units, enabling more 

flexible development, testing, and deployment [22], [23]. Waseem et al. conducted a systematic mapping study of 

microservices architecture in DevOps environments, identifying gaps in current implementation approaches [24]. 

Faustino et al. further demonstrated that while microservices offer improved scalability and maintenance, they 

introduce new challenges in deployment coordination and service orchestration [25]. 

This research addresses these gaps by exploring and analyzing optimal deployment strategies for microservices 

applications within a Kubernetes cluster through a comprehensive DevOps approach. Building upon fundamental 

Kubernetes concepts and recent practical implementations [26], [27], we aim to: 

1. Evaluate the impact of DevOps implementation on deployment efficiency and reliability 

2. Analyze error handling and recovery capabilities in automated versus manual deployment processes 

3. Measure and compare deployment times and service availability across different deployment methods 

Through this study, we aim to provide organizations with empirical evidence and practical guidance for optimizing 

their microservices deployment processes. 

Method  

This study employs a quantitative research design with an experimental approach. This design is chosen because it 

allows for direct testing of the effectiveness of implementing DevOps in optimizing the deployment of microservices 

applications within Kubernetes clusters. Quantitative research focuses on the collection and analysis of numerical data 

to measure variables and the relationships between them. In this study, numerical data related to deployment metrics 

such as deployment time, error count, and deployment success rate will be collected. This data will then be statistically 

analyzed to determine the effectiveness of DevOps implementation. The experiment involved deploying 12 different 

services using both DevOps and manual deployment methods. Each service was deployed ten times to capture a range 

of deployment times. The services included Adservice, Cartservice, Checkoutservice, Currencyservice, Emailservice, 

Frontend, Loadgenerator, Paymentservice, Productcatalogservice, Recommendationservice, Shippingservice, and 

Shoppingassistantservice. The average deployment times for each service were calculated and compared. 

A. Infrastructure 

The experiments were conducted using a private on-premises Kubernetes cluster deployed across six nodes. The 

full specifications of the system used are presented in Table 1. This configuration reflects a moderately distributed 

cluster suitable for real-world testing in development or pre-production environments. Each node was connected over 

a local area network and orchestrated by a kubeadm-initialized Kubernetes setup, with containerd as the container 

runtime. 
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Table 1. Kubernetes Cluster Nodes Spesifications 

No Hostname Spesifications Operating System Role 

1 master 4cpu, 6Gi Memory Ubuntu 22.04 Master node (control plane) 

2 worker1 4cpu, 8Gi Memory Ubuntu 22.04 Worker node 

3 worker2 4cpu, 6Gi Memory Ubuntu 22.04 Worker node 

4 worker3 6cpu, 12Gi Memory Ubuntu 22.04 Worker node 

5 worker4 6cpu, 16Gi Memory Ubuntu 22.04 Worker node 

6 worker5 8cpu, 24Gi Memory Ubuntu 22.04 Worker node 

The structure of the cluster is illustrated in Figure 1. The control plane manages scheduling, API access, and the 

state of the cluster, and all workloads run in the worker nodes [28]. To expose microservices outside, Istio was deployed. 

Specifically, the Istio Ingress Gateway was utilized to route traffic to particular VirtualService definitions for two 

primary categories of microservices. This made external HTTP access and DNS-based routing to test endpoints possible 

[29], [30]. It is noteworthy that even subsequent to the Istio installation, the advanced features of service mesh such as 

mutual TLS, traffic shifting, circuit breaking, and distributed tracing were not utilized. The research targets deployment 

and availability concerns more than internal network configuration or fine-grained observability [31]. 

 

Figure 1. Kubernetes Architecthure 
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B. Deployment Models Comparission 

The experimental approach involves manipulating the independent variable (DevOps implementation) and 

measuring its impact on the dependent variable (deployment metrics). In this research, two groups will be formed: a 

control group (without DevOps) and an experimental group (with DevOps). The differences in deployment outcomes 

between these two groups will be analyzed to assess the effectiveness of DevOps implementation. 

• Manual Deployment (Baseline Group) 

In the traditional workflow shown in Figure 2, deployment process involves several manual steps: image 

building, pushing to a container registry, updating manifests, and deploying Kubernetes manifests with 

kubectl. This process is very operator-dependent, which can be a source of delays as well as potential human 

error. 

 

Figure 2. Manual deployment 

• GitOps-based DevOps Deployment (Experimental Cohort) 

Depicted in Figure 3, this end-to-end automated process is GitOps-driven. Developers commit application 

code and deployment manifests to GitLab. This triggers a GitLab CI/CD pipeline that: 

1. Creates Docker images. 

2. Pushes them to the GitLab Container Registry. 

3. Updates the Kubernetes manifests located in the Git repository. 

ArgoCD monitors the Git repository in real time, identifies differences, and automatically synchronizes the 

desired state to the cluster. ArgoCD self-healing ensures configuration drift is fixed and failed deployments 

don't affect service right away. This deployment is based on GitOps principles: declarative configuration, 

automated reconciliation, version control, and observability [32], [33]. 

 

Figure 3. DevOps deployment 
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In modern IT environments, optimizing the deployment of microservices applications in Kubernetes clusters by 

adopting DevOps practices is crucial for ensuring the continuous availability of critical services [34]. High-availability 

(HA) infrastructure solutions and the application of DevOps principles are designed to achieve this by employing 

redundant components and failover mechanisms to prevent service downtime [35]. Adopting DevOps for the 

deployment of microservices applications with a focus on continuous principles as we can see in Figure 3, begins with 

developers committing and pushing code to a GitLab repository. GitLab then triggers a webhook that automatically 

initiates the CI/CD pipeline whenever there are changes in the repository. Within the CI/CD pipeline, the application is 

packaged into Docker images and these images are pushed to a Gitlab docker image registry [36]. Subsequently, 

ArgoCD identifies changes in the Kubernetes manifest within the GitLab repository and updates the deployment in the 

Kubernetes cluster using the new Docker images that were pushed by GitLab CI, all that process running automatically 

[37]. 

After all these processes, monitoring the running microservices applications in the Kubernetes cluster is essential to 

gather feedback and implement necessary updates. This cycle continues perpetually. 

In contrast, traditional methods handle these processes manually. In Figure 2, the developer's role typically ends at 

committing and pushing code to the GitLab repository or pushing Docker images to the gitlab registry, with subsequent 

steps managed by the operations team. This entire process must be executed manually, which is inefficient, time-

consuming, and prone to human error (potentially impacting the stability of the overall system). 

Results and Discussion  

This section analyzes and comparing the results of two primary deployment techniques: manual deployment and 

DevOps deployment as orchestrated with GitOps practices. The comparison evaluates parameters such as deployment 

time, error handling, and service uptime. While the scope of this research does not include large-scale dynamic load 

testing or detailed network traffic analysis, the findings offer relevant information regarding deployment trends and 

system stability in controlled environments. 

A. Deployment Time 

This research was conducted by 12 microservices with DevOps and manual deployment 10 times to view the 

different deployment time between DevOps and manual deployment. The detailed experiment available at Table 2 . 

Table 2. Avarange Deployment Time 

Service 
DevOps Avg Time 

(s) 

Manual Avg Time 

(s) 

Overall average 
Standard Deviation 

(seconds) 

DevOps Manual DevOps Manual 

Adservice 777.8 932.8 

522.525 872.2 150.35 61.39 

Cartservice 784.8 830 

Checkoutservice 498.1 774.4 

Currencyservice 484.3 864 

Emailservice 556.3 817.5 

Frontend 520.7 919.4 

Loadgenerator 498.6 933.8 

Paymentservice 243.9 839.1 

Productcatalogservice 602.5 976.5 

Recommendationservice 443.5 828.6 

Shippingservice 506.5 841.3 

Shoppingassistantservice 353.3 909 
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Figure 4. Deployment time comparission 

B. Statistical Analysis 

To evaluate whether the difference in deployment times between manual and DevOps methods is statistically 
significant, a two-sample t-test was conducted assuming equal variances. Each method was tested across 12 services (𝑛 
= 12), and the average deployment times were previously summarized in Table 2. 

Two-Sample t-Test with :  

Hypotheses 

Null Hypotheses (𝐻0) 

𝜇1 = 𝜇2 

(No significant difference in mean deployment time) 

Alternative Hypothesis (𝐻1) 

𝜇1 ≠ 𝜇2 

(There is a significant difference) 

Pooled Standard Deviation (𝑠𝑝) = 36.29 

Since we are assuming that both groups have equal population variances, we need to compute the pooled standard 
deviation, which combines the variability of both groups into a single estimate. This is especially useful when the 
sample sizes are equal, as in this case. 

𝑠𝑝 =  √
(𝑛1 − 1)𝑠1

2 + (𝑛1 − 1)𝑠2
2 

𝑛1 +  𝑛2 − 2
 

T-Statistic Calculation (𝑡) = −23.62 

Where 

• 𝓍̅1 and 𝓍̅2 are the sample means 

•  𝑠𝑝 is the pooled standard deviation 

•  𝓃 is the number of samples per group. 

The t-statistic measures the size of the difference relative to the variation in the sample data. It is calculated using the 
formula below:  

𝑡 =  
𝓍̅1 −  𝓍̅2

𝑠𝑝  ∙  √
2
𝑛
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Degrees of Freedom (𝑑𝑓) = 22, with this formula 

𝑑𝑓 =  𝑛1 +  𝑛2 − 2 

p-value < 0.00001, using a statistical software (SPSS), a t-statistic of -23.62 with 22 degrees of freedom results in a p-

value < 0.00001. 

Since this p-value is far below the conventional alpha level of 0.05, we reject the null hypothesis. This indicates a 

statistically significant difference between the two deployment methods. 

The measured deployment durations indicate a clear advantage for the automated DevOps pipeline. Across twelve 

trials each, the CI/CD-driven DevOps process averaged 522.5 s per deployment versus 872.2 s for manual deployment 

roughly a 40% reduction in time. A two-sample t-test (equal variances, 𝓃 = 12 per group) confirms this difference is 

highly significant. The pooled standard deviation (36.29),combined with a t-statistic of −23.62and  p-value smaller than 

0.001 confirm that the difference in avarage deployment time between the DevOps and manual methods is statistically 

significant. This substantial result confirms that the automated DevOps pipeline offers a consistent and measurable 

improvement over manual processes. The low variability and high significance level strengthen the conclusion that 

DevOps practices not only reduce deployment time but also contribute to a more reliable and repeatable deployment 

workflow, which is crucial for maintaining service availability in microservices-based architectures. Indeed, prior work 

has similarly found that introducing a CI/CD pipeline significantly reduced the deployment time compared to manual 

deployment. 

This magnitude of improvement is consistent with the general understanding that DevOps automation accelerates 

delivery. In manual deployments each step (building, testing, container creation, etc.) must be performed by hand, 

making the process slow and error-prone. In contrast, a CI/CD system like gitlab-ci or Jenkins can execute many steps 

automatically and in parallel maximizing time efficiency. Our result echoes studies reporting dramatic time savings (on 

the order of tens of percent) from automated pipelines. We note that AI-driven CI/CD tools are emerging as well, for 

example, pipelines that use machine learning to predict failures or optimize test order can further speed deployments 

but evaluation of such approaches is beyond this paper’s scope. 

The analysis reveals that DevOps deployment methods significantly reduce the average deployment time for all 

services tested. This reduction is particularly notable in services such as Paymentservice and Productcatalogservice, 

where the time savings exceed several hundred seconds. The automated processes inherent in DevOps likely contribute 

to these efficiencies by minimizing human error and increasing consistency across deployments. 

These findings should be interpreted in light of the study’s limitations. First, the tests did not include high-load or 

stress conditions; as experts emphasize, testing the scalability of a micro-service is very critical to ensure that 

deployments remain fast under increased workload. Second, we measured only end-to-end deployment time and did 

not collect lower-level metrics such as container startup latency or data transfer overhead. In a real microservices 

environment, each service-to-service “hop” adds latency, and cumulative inter-service communication can introduce 

nontrivial network overhead and bottlenecks. We also did not isolate the impact of inter-service messaging patterns on 

performance. Accounting for these factors (heavy load, latency, and communication overhead) in future experiments 

would provide a more complete view of deployment performance. 

C. Error handling and service availability 

In this study, we collected the error handling and service availability from DevOps deployment and manual 

deployment within wrong Kubernetes manifest with removing the imagePullSecret in kuberentes manifest. The wrong 

Kubernetes manifest can be seen in Figure 5. 

 

Figure 5. Kubernetes manifest without pullSecret 

This experiment made some service with wrong Kubernetes manifest wich not including the imagePullSecret wich 

is the credential for authenticating with the gitlab images registry as we can see in fig 4 to see how DevOps deployment 

and manual deployment handle the error. The DevOps deployment using ArgoCD with application configuration can 

be seen in Fig 6 and the service availability in DevOps deployment can be seen in Figure 6. 
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Figure 6. Service availability with DevOps deployment 

 

Figure 7. Argocd application configuration 

The DevOps deployment method using ArgoCD as Continous Deployment and uses the Git repository as the 

source of truth to determine the desired state of the application in Kubernetes cluster event he configuration was 

wrong, ArgoCD will not instantly  delete the old pod with selfHeal feature as we described in Figure 6. In summary, 

argocd can minimalize the downtime for application, because argocd will make sure the new deployment running 

properly before taking out or delete old deployment. The pod will not instantly replace with new pod , summary, 

the service was still available as we describe in Figure 7. 

 

Figure 8. Service availability without DevOps deployment 

On the other hand, manual deployment not verifying the Kubernetes manifest, with this experiment, the pod 

will not avaibale because the pod can’t pull the new images because don’t have authentication credential. Summary 

this can leading to service downtime with new deployment if the pod did not running properly as we describe in 

Figure 8. 
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D. Load Test and Cluster Behavior under Dynamic Workload 

To complement the deployment time analysis, we executed a load testing scenario to simulate production-level 

high traffic and exercise dynamic scaling behavior in the Kubernetes environment. The test targeted the 

productcataloge service endpoint /product/0PUK6V6EV0, simulating product detail fetch under maximum 

concurrent access. The test provided insight into runtime behavior of the Kubernetes cluster and exercised the 

deployment infrastructure's tolerance to sustained pressure. 

The load was simulated using Apache JMeter, generating 7,712 samples of HTTP requests over 10 minutes. 

The mean response time of 81,860 milliseconds was at a minimum of 68 milliseconds and a maximum of 675,480 

milliseconds, as can be seen from Table 3. The standard deviation of 56583,29 milliseconds was extremely high, 

indicating extremely high variation in response times. The system achieved a throughput of 11.3 requests per second 

and an error rate of 27.17%, which is most likely caused by resource saturation occurring at periods of peak latency. 

Table 3. Summary Report 

Label Samples Average Min Max Std. Dev Error% Throughput 
Received 

KB/sec 

Sent 

KB/sec 

Avg. 

Bytes 

HTTP 

Request 
7712 81860 68 675.480 56583.29 27.17 11.3/sec 85.96 1.93 7778.3 

TOTAL 7712 81860 68 675.480 56583.29 27.17 11.3/sec 85.96 1.93 7778.3 

This performance distribution is visualized in Figure 9, which illustrates a progressive rise in response time 

during the early phase of the test, peaking at ~140 seconds, followed by a mix of sustained latency and temporary 

drops. These drops correspond with temporary recovery points, possibly due to internal load distribution or cached 

responses. 

 

Figure 9. Response Time 

During the load testing phase of the product catalog service, we monitored traffic and CPU and memory 

utilization using Grafana in real-time at the pod level. Figure 10 illustrates the immediate change in memory usage 

that correlates to sustained traffic. In the first two minutes, memory usage was consistently above 80%, so the 

original pod utilization exceeded memory limits configured for a Horizontal Pod Autoscaler (HPA), which triggered 

a configured Kubernetes cluster scaling policy, resulting in the automatic creation of a new pod running the product 

catalog service. 

This activity supports our original hypothesis that autoscaling is providing elasticity in that it was 

accommodating service levels of availability for the dynamic workloads it was serving. When two product catalog 

service pods were instantiated, upon arrival rate, the traffic was being satisfied by two pods and the load was 

distributed more efficiently without service degradation under added traffic. 

As this example demonstrates, resource monitoring at runtime and autoscaling policy offers an important 

mechanism for elasticity and fault tolerance in microservices-enabled architectures. In addition, this example 

highlights the importance of selecting resource limits thresholds in order to make sure they are aligned to your 

workloads, such that autoscaling occurs with maximum influence and least overlap, respectively. 
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Figure 10. Grafana pod utilizations 

Together, these results reflect the service's performance degradation under sustained load without autoscaling 

support. In contrast to earlier tests involving the frontend service, where Horizontal Pod Autoscaler (HPA) was 

triggered based on memory thresholds, the productcatalogservice instance did not trigger scaling events. This 

suggests either more conservative HPA configuration, insufficient resource limits, or a need for revised threshold 

tuning. 

From a deployment reliability perspective, these results highlight the importance of not only automated 

deployment but also runtime observability and scaling policies. While the system remained operational, the latency 

spikes and error rates suggest that autoscaling policies must be carefully tailored to each microservice’s expected 

load pattern and criticality. 

Future iterations of this experiment should include: 

1. Application-specific HPA tuning based on both memory and CPU utilization. 

2. Load redistribution policies or circuit-breaking rules. 

3. Integration with service mesh observability tools (e.g., Istio telemetry, Kiali, or Jaeger) to trace failure 

origins and latencies at service hop-level resolution. 

These findings underscore that although GitOps-based deployment pipelines provide operational efficiency, 

runtime performance assurance still depends heavily on post-deployment observability and scaling configuration. 

Conclusion  

The results of this research show that the implementation of DevOps practices to deploy microservices applications 

to uniformly orchestrated kubernetes clusters increases the deployment efficiency, reliability, and operational 

resiliency of those applications. The quantitative comparison between DevOps based automation and traditional 

manual practices showed statistically significant deployment efficiencies yielded average deployment efficiencies of 

522.5 seconds (DevOps automation) and 872.2 seconds (manual methods). These efficiencies will allow organizations 

to reduce release cycles and human error while maintaining service continuity. When considering availability and 

fault tolerance, through the use of tools like ArgoCD, DevOps including self-healing functionality made it possible to 

maintain service uptime even with misconfigured deployments, whereas manual methods led to pod errors and service 

disruption. The automated rollback and verification capabilities in DevOps pipelines created a more flexible and 

reliable application development life cycle.  

Considering the scalability and networking perspective involves load-testing under dynamic workload features, 

DevOps deployments combined well with the auto-scaling features of kubernetes and allowed for better load balancing 

of requests and service responsiveness, while only utilizing Istios Ingress Gateway level (not full-service mesh) 

features, the system demonstrated better orchestration behavior in under increasing traffic. The autoscaling events 

were triggered and occurred as expected and allowed the pods to autorecover when the requests exceeded memory 

usage, allowing the pod forecasted performance (reduced request latency spikes). In conclusion, as implied by the 

self-healing aspects of our system, DevOps contributes to an optimum orchestrated experience. 

For industrial adoption, this research affirms that organizations can benefit from adopting GitOps-driven DevOps 

workflows to achieve faster deployment cycles, minimize operational risks, and scale services predictably. By aligning 

infrastructure as code, continuous deployment, and observability, companies can streamline their development-to-

deployment processes while improving infrastructure responsiveness to traffic surges and failures. Organizations 

seeking rapid innovation and operational agility, particularly in industries reliant on high availability such as fintech, 

healthtech, and e-commerce are encouraged to adopt these practices. 
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This research is limited in scope to the evaluation of a single DevOps implementation using GitOps and ArgoCD. 

Alternative paradigms such as AI-driven DevOps, GitOps with full service mesh capabilities, or hybrid cloud multi-

cluster deployment strategies were not explored. Furthermore, security aspects (DevSecOps) and cost-efficiency 

evaluations were excluded from the experiments, despite their increasing relevance in production-grade environments. 
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