Prediction of Rice Production in Jember Regency Using Adaptive Neuro Fuzzy Inference System (ANFIS)


Abduh Riski(1*); Novia Ayu Putriana(2); Firda Fadri(3); Ahmad Kamsyakawuni(4); Agustina Pradjaningsih(5); Kiswara Agung Santoso(6); Merysa Puspita Sari(7);

(1) Universitas Jember
(2) Universitas Jember
(3) Universitas Jember
(4) Universitas Jember
(5) Universitas Jember
(6) Universitas Jember
(7) Universitas Jember
(*) Corresponding Author

  

Abstract


Jember Regency is the fourth largest rice-producing regency/city in East Java, so Jember Regency dramatically contributes to increasing the agricultural sector in East Java Province. However, the level of rice production can fluctuate, which is influenced by other factors such as rainfall. A prediction system is needed to anticipate a decrease in rice production. This research aims to predict rice production in the Jember Regency using the Adaptive Neuro Fuzzy Inference System (ANFIS), highlighting the impact of key variables like rainfall, harvested area, and land productivity. This research consists of three stages: training, testing, and prediction. The input variables used in this research are rainfall (mm), harvested area (Ha.), and land productivity (Kw/Ha.), while the output variable is rice production (tons). The membership functions used are generalized Bell and Gaussian, with several combinations of many membership functions. The best model obtained from this research is a model that uses generalized bell membership functions with three membership functions for rainfall variables and two membership functions for harvest area and land productivity variables. The epoch (iteration) used to achieve minimum error is 100 epochs. The best model achieved high accuracy, producing a MAPE value of 0.080% in training and 1.525% in testing, indicating its strong potential for reliable agricultural production forecasting. The predicted amount of rice production in Jember Regency in 2024 was 922,136.8317 tons.


Keywords


ANFIS; Prediction; Rice Production

  
  

Full Text:

PDF
  

Article Metrics

Abstract view: 0 times
PDF view: 0 times
     

Digital Object Identifier

doi  https://doi.org/10.33096/ilkom.v17i3.2797.262-275
  

Cite

References


Badan Pusat Statistik Provinsi Jawa Timur, “Produksi Padi (GKG).” Accessed: Nov. 10, 2024.

S. Komatsu, K. Saito, and T. Sakurai, “Changes in production, yields, and the cropped area of lowland rice over the last 20 years and factors affecting their variations in Côte d′Ivoire,” Field Crops Res, vol. 277, p. 108424, Mar. 2022, doi: 10.1016/j.fcr.2021.108424.

A. A. Asriadi and F. Firmansyah, “The Influence of Harvested Area, Rice Consumption on Rice Crop Production in Makassar City,” Baselang, vol. 3, no. 2, pp. 115–120, Oct. 2023, doi: 10.36355/bsl.v3i2.107.

F. Mena et al., “Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction,” Remote Sens Environ, vol. 318, p. 114547, Mar. 2025, doi: 10.1016/j.rse.2024.114547.

N. Chaniago, “The Effect of Rainfall on Rice Production and Productivity in Percut Sei Tuan District, Deli Serdang Regency, North Sumatra,” Agriland, vol. 11, no. 3, pp. 130–136, 2023.

H. R. Bedane, K. T. Beketie, E. E. Fantahun, G. L. Feyisa, and F. A. Anose, “The impact of rainfall variability and crop production on vertisols in the central highlands of Ethiopia,” Environmental Systems Research, vol. 11, no. 1, p. 26, Dec. 2022, doi: 10.1186/s40068-022-00275-3.

M. Joseph, S. Moonsammy, H. Davis, D. Warner, A. Adams, and T. D. Timothy Oyedotun, “Modelling climate variabilities and global rice production: A panel regression and time series analysis,” Heliyon, vol. 9, no. 4, p. e15480, Apr. 2023, doi: 10.1016/j.heliyon.2023.e15480.

S. Jeong, J. Ko, J. Ban, T. Shin, and J. Yeom, “Deep learning-enhanced remote sensing-integrated crop modeling for rice yield prediction,” Ecol Inform, vol. 84, p. 102886, Dec. 2024, doi: 10.1016/j.ecoinf.2024.102886.

D. A. Korzhakin and E. Sugiharti, “Implementation of Genetic Algorithm and Adaptive Neuro Fuzzy Inference System in Predicting Survival of Patients with Heart Failure,” Scientific Journal of Informatics, vol. 8, no. 2, pp. 251–257, Nov. 2021, doi: 10.15294/sji.v8i2.32803.

S. Radfar, H. Koosha, A. Gholami, and A. Amindoust, “A neuro-fuzzy and deep learning framework for accurate public transport demand forecasting: Leveraging spatial and temporal factors,” J Transp Geogr, vol. 126, p. 104217, Jun. 2025, doi: 10.1016/j.jtrangeo.2025.104217.

S. S. Tabrizi and N. Sancar, “Prediction of Body Mass Index: A comparative study of multiple linear regression, ANN and ANFIS models,” Procedia Comput Sci, vol. 120, pp. 394–401, 2017, doi: 10.1016/j.procs.2017.11.255.

N. S. Mohd Ali et al., “Power peaking factor prediction using ANFIS method,” Nuclear Engineering and Technology, vol. 54, no. 2, pp. 608–616, Feb. 2022, doi: 10.1016/j.net.2021.08.011.

L. Wang and S. Pang, “An Implementation of the Adaptive Neuro-Fuzzy Inference System (ANFIS) for Odor Source Localization,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Oct. 2020, pp. 4551–4558. doi: 10.1109/IROS45743.2020.9341688.

M. Achite, E. Gul, N. Elshaboury, M. Jehanzaib, B. Mohammadi, and A. Danandeh Mehr, “An improved adaptive neuro-fuzzy inference system for hydrological drought prediction in Algeria,” Physics and Chemistry of the Earth, Parts A/B/C, vol. 131, p. 103451, Oct. 2023, doi: 10.1016/j.pce.2023.103451.

Z. Zulfauzi, B. Santoso, M. A. S. Arifin, and S. Nuraisyah, “Implementation of Adaptive Neuro-Fuzzy Inference System (Anfis) Method on Rice Price Prediction in Lubuklinggau City,” JURNAL TEKNOLOGI DAN OPEN SOURCE, vol. 4, no. 2, pp. 260–269, Dec. 2021, doi: 10.36378/jtos.v4i2.1847.

H. Haviluddin, H. S. Pakpahan, N. Puspitasari, G. M. Putra, R. Y. Hasnida, and R. Alfred, “Adaptive Neuro-Fuzzy Inference System for Waste Prediction,” Knowledge Engineering and Data Science, vol. 5, no. 2, p. 122, Dec. 2022, doi: 10.17977/um018v5i22022p122-128.

W. Suparta and A. A. Samah, “Rainfall prediction by using ANFIS times series technique in South Tangerang, Indonesia,” Geod Geodyn, vol. 11, no. 6, pp. 411–417, Nov. 2020, doi: 10.1016/j.geog.2020.08.001.

S. D. Barewar, P. S. Kalos, B. Bakthavatchalam, M. Joshi, S. Patil, and M. Sonekar, “Analysis and prediction of thermo-physical properties in water-based MWCNT-ZnO hybrid nanofluids using ANN and ANFIS models,” International Journal of Thermofluids, vol. 27, p. 101159, May 2025, doi: 10.1016/j.ijft.2025.101159.

P. Mottahedin, B. Chahkandi, R. Moezzi, A. M. Fathollahi-Fard, M. Ghandali, and M. Gheibi, “Air quality prediction and control systems using machine learning and adaptive neuro-fuzzy inference system,” Heliyon, vol. 10, no. 21, p. e39783, Nov. 2024, doi: 10.1016/j.heliyon.2024.e39783.

B. Khoshnevisan, S. Rafiee, M. Omid, and H. Mousazadeh, “Development of an intelligent system based on ANFIS for predicting wheat grain yield on the basis of energy inputs,” Information Processing in Agriculture, vol. 1, no. 1, pp. 14–22, Aug. 2014, doi: 10.1016/j.inpa.2014.04.001.

A. Kamsyakawuni, W. Sholihah, and A. Riski, “Prediction System For The Amount Of Sugar Production Using Adaptive Neuro-Fuzzy Inference System,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 18, no. 4, pp. 2597–2610, Oct. 2024, doi: 10.30598/barekengvol18iss4pp2597-2610.

X. Han, F. Liu, X. He, and F. Ling, “Research on Rice Yield Prediction Model Based on Deep Learning,” Comput Intell Neurosci, vol. 2022, pp. 1–9, Apr. 2022, doi: 10.1155/2022/1922561.

M. B. Gorzalczany, Computational Intelligence Systems and Applications: Neuro-Fuzzy and Fuzzy Neural Synergisms, vol. 86. Heidelberg: Physica-Verlag, 2002.

J.-S. R. Jang, C.-T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. New Jersey: Prentice Hall, 1997.

R. Abdi, G. Shahgholi, V. R. Sharabiani, A. R. Fanaei, and M. Szymanek, “Prediction compost criteria of organic wastes with Biochar additive in in-vessel composting machine using ANFIS and ANN methods,” Energy Reports, vol. 9, pp. 1684–1695, Dec. 2023, doi: 10.1016/j.egyr.2023.01.001.

C. T. . Lin and C. S. G. . Lee, Neural fuzzy systems : a neuro-fuzzy synergism to intelligent systems. Prentice Hall PTR, 1996.

P. Xu, U. F. Alqsair, and A. S. El-Shafay, “Prediction of gas fraction in wastewater treatment with ANFIS method for different height of single sparger location,” Environ Technol Innov, vol. 26, p. 102350, May 2022, doi: 10.1016/j.eti.2022.102350.

S. Kim and H. Kim, “A new metric of absolute percentage error for intermittent demand forecasts,” Int J Forecast, vol. 32, no. 3, pp. 669–679, Jul. 2016, doi: 10.1016/j.ijforecast.2015.12.003.

A. de Myttenaere, B. Golden, B. Le Grand, and F. Rossi, “Mean Absolute Percentage Error for regression models,” Neurocomputing, vol. 192, pp. 38–48, Jun. 2016, doi: 10.1016/j.neucom.2015.12.114.

A. Binbusayyis and M. Sha, “Energy consumption prediction using modified deep CNN-Bi LSTM with attention mechanism,” Heliyon, vol. 11, no. 1, p. e41507, Jan. 2025, doi: 10.1016/j.heliyon.2024.e41507.

R. K. C. Chan, J. M.-Y. Lim, and R. Parthiban, “Long-term traffic speed prediction utilizing data augmentation via segmented time frame clustering,” Knowl Based Syst, vol. 308, p. 112785, Jan. 2025, doi: 10.1016/j.knosys.2024.112785.

P.-Y. Chen, C.-C. Chen, C. Kang, J.-W. Liu, and Y.-H. Li, “Soil water content prediction across seasons using random forest based on precipitation-related data,” Comput Electron Agric, vol. 230, p. 109802, Mar. 2025, doi: 10.1016/j.compag.2024.109802.

M. Jiang et al., “Multistep prediction for egg prices: An efficient sequence-to-sequence network,” Egyptian Informatics Journal, vol. 29, p. 100628, Mar. 2025, doi: 10.1016/j.eij.2025.100628.

T. Meggs, “anfis.” Accessed: Dec. 13, 2024.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Abduh Riski, Novia Ayu Putriana, Firda Fadri, Ahmad Kamsyakawuni, Agustina Pradjaningsih, Kiswara Agung Santoso, Merysa Puspita Sari

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.