Analysis and Prediction of Vertical Office Network Bandwidth Using a Backpropagation-Based Neural Network


Muhammad Jamil Asshiddiq(1*); Iffatul Mardhiyah(2);

(1) Universitas Gunadarma
(2) Universitas Gunadarma
(*) Corresponding Author

  

Abstract


The digitalization of business and operational processes in vertical offices has transformed work behaviour, creating a critical need for stable internet connectivity to ensure smooth operations. This issue triggered stakeholders and technical teams to evaluate bandwidth usage trends to enable optimal future planning. Backpropagation, a neural network algorithm, can effectively predict complex patterns using historical data. The ability of the Backpropagation algorithm to adapt to time-series data makes it ideal for forecasting network bandwidth. Therefore, this research aims to analyze and predict network bandwidth requirements using a Backpropagation-Based Neural Network algorithm. This study, which utilized data from October 2022 to September 2024, demonstrates that the Neural Network model provides a high prediction accuracy. The Backpropagation algorithm able to predict the increasing trend in bandwidth usage for October 2024 with a prediction accuracy of 89.08% and a Mean Absolute Percentage Error (MAPE) of 10.92%. Model used in this study can be used as a reference parameter for stakeholders and technical teams within organization for future bandwidth allocation


Keywords


Network Bandwidth; Prediction; Neural Network; Backpropagation; Fifth Keyword

  
  

Full Text:

PDF
  

Article Metrics

Abstract view: 148 times
PDF view: 51 times
     

Digital Object Identifier

doi  https://doi.org/10.33096/ilkom.v17i2.2709.170-185
  

Cite

References


Menteri Keuangan Republik Indonesia, “Peraturan Menteri Keuangan Republik Indonesia Nomor 210/PMK.01/2017 tentang Organisasi dan Tata Kerja Instansi Vertikal Direktorat Jenderal Perbendaharaanajak,” Ber. Negara Republik Indones. Tahun 2017 Nomor 30, pp. 2–16, 2017.

R. S. Gautam, M. Siddiqui, N. Panda, S. Rastogi, and R. T. Gannamaraju, “Digitalization of Government Financial Services and its Impact on Sustainable Development Goals in India,” 2024 Int. Conf. Autom. Comput. AUTOCOM 2024, pp. 558–562, 2024, doi: 10.1109/AUTOCOM60220.2024.10486078.

Y. Wang, “Research on the Impact of Digitalization on Technological Innovation and Its Spatial Spillover Effect,” Proc. - 2022 Glob. Conf. Robot. Artif. Intell. Inf. Technol. GCRAIT 2022, pp. 774–777, 2022, doi: 10.1109/GCRAIT55928.2022.00166.

M. Krejnus, J. Stofkova, K. R. Stofkova, and V. Binasova, “The Use of the DEA Method for Measuring the Efficiency of Electronic Public Administration as Part of the Digitization of the Economy and Society,” Appl. Sci., vol. 13, no. 6, 2023, doi: 10.3390/app13063672.

T. Lynn, P. Rosati, E. Conway, D. Curran, G. Fox, and C. O’Gorman, Digital Towns : Accelerating and Measuring the Digital Transformation of Rural Societies and Economies. 2022. doi: 10.1007/978-3-030-91247-5_3.

A. I. Adekitan, J. Abolade, and O. Shobayo, “Data mining approach for predicting the daily Internet data traffic of a smart university,” J. Big Data, vol. 6, no. 1, 2019, doi: 10.1186/s40537-019-0176-5.

S. Strube Martins and C. Wernick, “Regional differences in residential demand for very high bandwidth broadband internet in 2025,” Telecomm. Policy, vol. 45, no. 1, p. 102043, 2021, doi: 10.1016/j.telpol.2020.102043.

H. Jamil, E. Rodrigues, J. Goldverg, and T. Kosar, “Learning to Maximize Network Bandwidth Utilization with Deep Reinforcement Learning,” Proc. - IEEE Glob. Commun. Conf. GLOBECOM, pp. 3711–3716, 2023, doi: 10.1109/GLOBECOM54140.2023.10437507.

M. Labonne, C. Chatzinakis, and A. Olivereau, “Predicting bandwidth utilization on network links using machine learning,” 2020 Eur. Conf. Networks Commun. EuCNC 2020, pp. 242–247, 2020, doi: 10.1109/EuCNC48522.2020.9200910.

S. Song et al., “A bandwidth allocation scheme based on GRU traffic prediction in passive optical networks,” Opt. Commun., vol. 574, no. October 2024, p. 131222, 2025, doi: 10.1016/j.optcom.2024.131222.

B. Panigrahi, K. C. R. Kathala, and M. Sujatha, “A Machine Learning-Based Comparative Approach to Predict the Crop Yield Using Supervised Learning With Regression Models,” Procedia Comput. Sci., vol. 218, pp. 2684–2693, 2023, doi: https://doi.org/10.1016/j.procs.2023.01.241.

M. Dampfhoffer, T. Mesquida, A. Valentian, and L. Anghel, “Backpropagation-Based Learning Techniques for Deep Spiking Neural Networks: A Survey,” IEEE Trans. Neural Networks Learn. Syst., vol. 35, no. 9, pp. 11906–11921, 2024, doi: 10.1109/TNNLS.2023.3263008.

A. Momeni, B. Rahmani, M. Malléjac, P. del Hougne, and R. Fleury, “Backpropagation-free training of deep physical neural networks,” Science (80-. )., vol. 382, no. 6676, pp. 1297–1303, Dec. 2023, doi: 10.1126/science.adi8474.

A. M. Rizki, G. E. Yuliastuti, A. L. Nurlaili, and F. P. Aditiawan, “Forecasting the Inflation Rate in Indonesia Using Backpropagation Artificial Neural Network,” Proceeding - IEEE 8th Inf. Technol. Int. Semin. ITIS 2022, pp. 297–300, 2022, doi: 10.1109/ITIS57155.2022.10010298.

H. Liu, Y. Duan, J. Li, and T. Li, “Study on Wind Forecasting for Beijing 2022 Winter Olympic Games Based on Unsupervised Machine Learning,” 2023 IEEE 4th Int. Conf. Pattern Recognit. Mach. Learn. PRML 2023, pp. 552–556, 2023, doi: 10.1109/PRML59573.2023.10348362.

F. S. Harahap, F. R. A. Bukit, and F. Fahmi, “Estimation of Electrical Energy Needs Using Backpropagation Neural Network,” in 2024 IEEE International Conference on Artificial Intelligence and Mechatronics Systems (AIMS), 2024, pp. 1–6. doi: 10.1109/AIMS61812.2024.10512759.

C. Hayat, I. A. Soenandi, S. Limong, and J. Kurnia, “Modeling of prediction bandwidth density with backpropagation neural network (BPNN) methods,” IOP Conf. Ser. Mater. Sci. Eng., vol. 852, no. 1, 2020, doi: 10.1088/1757-899X/852/1/012127.

B. Faye, H. Azzag, M. Lebbah, and F. Feng, “Context normalization: A new approach for the stability and improvement of neural network performance,” Data Knowl. Eng., vol. 155, p. 102371, 2025, doi: 10.1016/j.datak.2024.102371.

Y. S. Kim, M. K. Kim, N. Fu, J. Liu, J. Wang, and J. Srebric, “Investigating the impact of data normalization methods on predicting electricity consumption in a building using different artificial neural network models,” Sustain. Cities Soc., vol. 118, no. June 2024, p. 105570, 2025, doi: 10.1016/j.scs.2024.105570.

P. J. Muhammad Ali, “Investigating the Impact of Min-Max Data Normalization on the Regression Performance of K-Nearest Neighbor with Different Similarity Measurements,” ARO-The Sci. J. Koya Univ., vol. 10, no. 1, pp. 85–91, 2022, doi: 10.14500/aro.10955.

I. Mekongga, R. Gernowo, and A. Sugiharto, “The Prediction of Bandwidth On Need Computer Network Through Artificial Neural Network Method of Backpropagation,” J. Sist. Inf. Bisnis, vol. 2, no. 2, pp. 98–107, 2012, doi: 10.21456/vol2iss2pp098-107.

J. Zhang, C. Chen, C. Wu, X. Kou, and Z. Xue, “Storage quality prediction of winter jujube based on particle swarm optimization-backpropagation-artificial neural network (PSO-BP-ANN),” Sci. Hortic. (Amsterdam)., vol. 331, p. 112789, 2024, doi: https://doi.org/10.1016/j.scienta.2023.112789.

M. M. Lau and K. H. Lim, “Review of adaptive activation function in deep neural network,” 2018 IEEE EMBS Conf. Biomed. Eng. Sci. IECBES 2018 - Proc., pp. 686–690, 2019, doi: 10.1109/IECBES.2018.08626714.

A. A. Waoo and B. K. Soni, “Performance Analysis of Sigmoid and Relu Activation Functions in Deep Neural Network BT - Intelligent Systems,” A. Sheth, A. Sinhal, A. Shrivastava, and A. K. Pandey, Eds., Singapore: Springer Singapore, 2021, pp. 39–52.

S. R. Dubey, S. K. Singh, and B. B. Chaudhuri, “Activation functions in deep learning: A comprehensive survey and benchmark,” Neurocomputing, vol. 503, pp. 92–108, 2022, doi: 10.1016/j.neucom.2022.06.111.

I. Ranggadara, I. Prihandi, and A. Ratnasari, “Backpropagation Neural Network for Predict Sugarcane Stock Availability,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 5, pp. 8279–8284, 2020, doi: 10.30534/ijatcse/2020/197952020.

E. Budianita, O. Okfalisa, and M. R. Assiddiki, “The Prediction of E-Money Circulation: Backpropagation with Genetic Algorithm Adoption,” in 2021 International Congress of Advanced Technology and Engineering (ICOTEN), 2021, pp. 1–6. doi: 10.1109/ICOTEN52080.2021.9493468.

A. Singh, S. Kushwaha, M. Alarfaj, and M. Singh, “Comprehensive Overview of Backpropagation Algorithm for Digital Image Denoising,” Electron., vol. 11, no. 10, 2022, doi: 10.3390/electronics11101590.

T. O. Hodson, “Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not,” Geosci. Model Dev., vol. 15, no. 14, pp. 5481–5487, 2022, doi: 10.5194/gmd-15-5481-2022.

S. Arslankaya, “Comparison of performances of fuzzy logic and adaptive neuro-fuzzy inference system (ANFIS) for estimating employee labor loss,” J. Eng. Res., vol. 11, no. 4, pp. 469–477, 2023, doi: 10.1016/j.jer.2023.100107.

D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient ofdetermination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, pp. 1–24, 2021, doi: 10.7717/PEERJ-CS.623.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Muhammad Jamil Asshiddiq

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.