Detection of Curcuma and Turmeric Differences Utilizing Fuzzy Tsukamoto Android-Based CCN Model
Fajar Rahardika Bahari Putra(1); Muhammad Rizki Setyawan(2*); Ahmad Ilham(3); Dimas Adi Suseno(4);
(1) Universitas Muhammadiyah Sorong
(2) Universitas Muhammadiyah Sorong
(3) Universitas Muhammadiyah Sorong
(4) Universitas Muhammadiyah Sorong
(*) Corresponding Author
AbstractTurmeric and curcuma are herbs that are often used in medicine and cooking. However, their similar shapes and colours make it difficult for people, especially in Southwest Papua, to distinguish between them directly. According to the Central Statistics Agency (BPS) in 2023, turmeric production reached 18,302 units, far higher than turmeric, which only reached 2,950 units. Based on field interviews in Southwest Papua, more than 60% of respondents had difficulty distinguishing turmeric from turmeric. To address this issue, this research develops an Android-based classification system by integrating the Fuzzy Tsukamoto algorithm with Convolutional Neural Network (CNN) models. Five CNN models VGG16, MobileNetV2, NASNetMobile, EfficientNetB2, and EfficientNetB3 were selected based on their balance between computational efficiency (MobileNetV2, NASNetMobile), depth and proven stability (VGG16), and modern scalable architectures (EfficientNetB2 and B3). Each model was combined with fuzzy logic to enhance classification accuracy. he dataset consisted of 800 images of curcuma and turmeric obtained from Kaggle and field collections. The data were divided into training, validation, and testing sets, and augmented through a series of transformations including rescaling to a range of 0 to 1, rotation up to 40 degrees, horizontal shift of 20%, angular distortion (shear) of 20%, zoom up to 30%, horizontal flipping, and brightness adjustment. Empty areas generated during augmentation were filled using the nearest pixel value with the ‘nearest’ mode to preserve image integrity. Training was performed using the AdamW optimizer and fine-tuning. Model evaluation employed accuracy, precision, recall, F1-score, and confusion matrix metrics. The results showed that the VGG16 model performed best, achieving 97% accuracy, 98% precision, 97% recall, and 98% F1-score, as confirmed by the classification report and confusion matrix. This model was also the most stable when tested on the Android system, while EfficientNetB2 and B3 produced less satisfactory outcomes. These findings demonstrate that combining CNN and Fuzzy Tsukamoto improves the classification accuracy of images with high visual similarity. The proposed system has the potential to be applied as a direct plant identification tool in the field and can be further extended to classify other visually similar plants KeywordsCurcuma, Turmeric, CNN, Fuzzy Tsukamoto, Android Classification.
|
Full Text:PDF |
Article MetricsAbstract view: 0 timesPDF view: 0 times |
Digital Object Identifier https://doi.org/10.33096/ilkom.v17i3.2857.276-291
|
Cite |
References
F. R. B. Putra, A. Fadlil, dan R. Umar, “Analisis Metode Forward Chaining Pada Sistem Pakar Diagnosa Penyakit Hewan Sapi Berbasis Android,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, hal. 1034–1044, 2021. doi: http://dx.doi.org/10.30645/j-sakti.v5i2.398
F. R. B. Putra, M. R. Setyawan, N. Rendra Soekarta, dan L. J. Fakhri, “Implementasi Deep Learning Menggunakan CNN Untuk Klasifikasi Tingkat Kematangan Buah Jeruk Berbasis Android,” J. MAHAJANA Inf., vol. 9, no. 2, hal. 85–94, 2024. doi: https://doi.org/10.51544/jurnalmi.v9i2.5462
D. A. Widiyastuti, A. Ajizah, L. Nurtamara, N. Huda, dan M. Afdal, “Pemberdayaan Ekonomi Skala Rumah Tangga Melalui Pembuatan Jamu Bubuk Rempah Temulawak, Jahe, Kunyit, dan Sereh,” J. Pengabdi. ILUNG (Inovasi Lahan Basah Unggul), vol. 3, no. 2, hal. 369, 2023, doi: 10.20527/ilung.v3i2.10298.
A. Z. Pramesthi, F. Purnamasari, dan I. Setiawan, “Eksplorasi Keanekaragaman Hayati Tanaman Konsumsi di Pekarangan Desa Sumber RW 07 Surakarta Integrasi Fungsi Pangan dan Pengobatan,” vol. 4, hal. 7865–7880, 2024, doi: https://doi.org/10.31004/innovative.v4i6.
P. T. J. Sutarsi, D. Wiradiestia, A. Altway, S. Winardi, Wahyudiono, dan S. Machmudah, “Extraction Process Optimization of Curcumin from Curcuma xanthorrhiza Roxb. with Supercritical Carbon Dioxide Using Ethanol as a Cosolvent,” ACS Omega, vol. 9, no. 1, hal. 1251–1264, 2024, doi: 10.1021/acsomega.3c07497.
S. Argel-Pérez dkk., “Characterization of a Novel Starch Isolated from the Rhizome of Colombian Turmeric (Curcuma longa L.) Cultivars,” Foods, vol. 13, no. 1, 2024, doi: 10.3390/foods13010007.
S. Machmudah dkk., “Enhancement of Curcuma xanthorrhiza Roxb Phytochemical Dissolution via Micronization Using a Supercritical Antisolvent Technique,” ACS Omega, vol. 7, no. 7, hal. 6345–6353, 2022, doi: 10.1021/acsomega.1c06911.
A. Stasiłowicz-Krzemień dkk., “Natural Deep Eutectic Solvents Combined with Supercritical Carbon Dioxide for the Extraction of Curcuminoids from Turmeric,” Pharmaceuticals, vol. 17, no. 12, 2024, doi: 10.3390/ph17121596.
E. Rahmat, J. Lee, dan Y. Kang, “Javanese Turmeric (Curcuma xanthorrhiza Roxb.): Ethnobotany, Phytochemistry, Biotechnology, and Pharmacological Activities,” Evidence-based Complement. Altern. Med., vol. 2021, 2021, doi: 10.1155/2021/9960813.
S. K. Kardos, Sofiano, Destrianto Mursalin, Sofian Kardos, Ibrahim Anas Duwila, - Muh. Hasbiollah, Haedar Ardi Aqsha, - Listar Tandi Roma, Putu Krishnanda Supriyatna, - Rahmadin Muttaqin, Citra Rizky Handayani, Citra Rizky Handayani, Harianto Palanu, Noviria E., “Data BPS Provinsi Papua Barat Daya,” https://satudata.papuabaratdayaprov.go.id/, vol. 1, no. 1, hal. 1689–1699, 2024, [Daring]. Tersedia pada: https://satudata.papuabaratdayaprov.go.id/files/output/0babbfa68d8841e53090be090d05e565_1730796069.pdf
A. Pratondo, E. Elfahmi, dan A. Novianty, “Classification of Curcuma longa and Curcuma zanthorrhiza using transfer learning,” PeerJ Comput. Sci., vol. 8, hal. 1–15, 2022, doi: 10.7717/peerj-cs.1168.
T. H. Kim dkk., “ANFIS Fuzzy convolutional neural network model for leaf disease detection,” Front. Plant Sci., vol. 15, no. November, hal. 1–14, 2024, doi: 10.3389/fpls.2024.1465960.
A. Manna, R. Kundu, D. Kaplun, A. Sinitca, dan R. Sarkar, “A fuzzy rank-based ensemble of CNN models for classification of cervical cytology,” Scientific Reports, vol. 11, no. 1. 2021. doi: 10.1038/s41598-021-93783-8.
P. Pawaskar, H. K. Yogish, B. Pakruddin, dan Y. Deepa, “A Novel and Efficient Deep Learning Models for Assessing AI ’ s Impact on Disease Diagnosis in Agriculture,” vol. I, hal. 1–9, 2025, doi: 10.18805/IJARe.A-6388.Submitted.
R. Selvaraj dan M. S. G. Devasena, “A novel attention based vision transformer optimized with hybrid optimization algorithm for turmeric leaf disease detection,” Sci. Rep., vol. 15, no. 1, hal. 1–25, 2025, doi: 10.1038/s41598-025-02185-7.
A. Altameem, C. Mahanty, R. C. Poonia, A. K. J. Saudagar, dan R. Kumar, “Breast Cancer Detection in Mammography Images Using Deep Convolutional Neural Networks and Fuzzy Ensemble Modeling Techniques,” Diagnostics, vol. 12, no. 8, 2022, doi: 10.3390/diagnostics12081812.
N. L. Marpaung, R. J. H. Butar Butar, dan S. Hutabarat, “Implementasi Deep learning untuk Identifikasi Daun Tanaman Obat Menggunakan Metode Transfer learning,” J. Edukasi dan Penelit. Inform., vol. 9, no. 3, hal. 348, 2023, doi: https://doi.org/10.30591/jpit.v8i2.5217.
V. Devisurya, R. Devi Priya, dan N. Anitha, “Early detection of major diseases in turmeric plant using improved deep learning algorithm,” Bull. Polish Acad. Sci. Tech. Sci., vol. 70, no. 2, hal. 1–10, 2022, doi: 10.24425/bpasts.2022.140689.
J. J. Albaqami dkk., “Chemical Composition and Biological Activities of the Leaf Essential Oils of Curcuma longa, Curcuma aromatica and Curcuma angustifolia,” Antibiotics, vol. 11, no. 11. 2022. doi: 10.3390/antibiotics11111547.
R. G. P. Panjaitan, Titin, dan Y. G. S. Yuliana, “Histopathological and Immunohistochemical Features of the Liver of Mice by Giving Temulawak Rhizome Extract (Curcuma xanthorrhiza Roxb.),” Toxicol. Int., vol. 32, no. 1, hal. 25–34, 2025, doi: 10.18311/ti/2025/v32i1/36525.
E. J. Iweala dkk., “Curcuma longa (Turmeric): Ethnomedicinal uses, phytochemistry, pharmacological activities and toxicity profiles—A review,” Pharmacol. Res. - Mod. Chinese Med., vol. 6, no. December 2022, hal. 100222, 2023, doi: 10.1016/j.prmcm.2023.100222.
B. Kandel dan S. Mukhopadhyay, “Phytochemicaland pharmacological properties of Curcuma longa Linn,” Int. J. Health Sci. (Qassim)., vol. 6, no. June, hal. 3501–3510, 2022, doi: 10.53730/ijhs.v6ns6.10185.
J. Lim dkk., “Phytochemical properties and functional characteristics of wild turmeric (Curcuma aromatica) fermented with Rhizopus oligosporus,” Food Chem. X, vol. 13, no. November 2021, 2022, doi: 10.1016/j.fochx.2021.100198.
A. Lawi, A. A. Dermawan, D. E. Kurniawan, I. M. Reza, F. E. Gulo, dan Z. A. Hasibuan, “Exploring the Landscape of Deep Learning Techniques for IoT Data: A Systematic Literature Review,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 15, no. 2, hal. 578–588, 2025, doi: 10.18517/ijaseit.15.2.20226.
A. Al-Khulaqi, N. Palanichamy, S. C. Haw, dan S. C. Raja, “Evaluating Machine Learning and Deep Learning Algorithms for Predictive Maintenance of Hydraulic Systems,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 15, no. 1, hal. 52–59, 2025, doi: 10.18517/ijaseit.15.1.12407.
Pontiselly, M. Ahsan, dan M. H. Lee, “Deep Learning and Statistical Process Control Approach to Improve Quality in Immigration Services,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 14, no. 5, hal. 1564–1573, 2024, doi: 10.18517/ijaseit.14.5.19978.
H. Rumapea, M. Zarlis, S. Efendy, dan P. Sihombing, “Improving Convective Cloud Classification with Deep Learning: The CC-Unet Model,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 14, no. 1, hal. 28–36, 2024, doi: 10.18517/ijaseit.14.1.18658. doi: 10.18517/ijaseit.14.1.18658
K. D. K. Wardhani, S. Kasim, A. Erianda, dan R. Hassan, “Deep Learning-based Method in Multimodal Data for Diabetic Retinopathy Detection,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 14, no. 5, hal. 1602–1608, 2024, doi: 10.18517/ijaseit.14.5.11677.
L. Wei, Y. Luo, L. Xu, Q. Zhang, Q. Cai, dan M. Shen, “Deep convolutional neural network for rice density prescription map at ripening stage using unmanned aerial vehicle-based remotely sensed images,” Remote Sens., vol. 14, no. 1, 2022, doi: 10.3390/rs14010046.
R. B. Fajar Putra, M. Surahmanto, dan Haris, “Implementation of Machine Learning Classification of Obesity Weight using Dicision Tree,” Int. J. Inf. Syst. Technol., vol. 8, no. 158, hal. 110–116, 2024, doi: https://doi.org/10.30645/ijistech.v8i2.354.
F. R. B. Putra, A. Fadlil, dan R. Umar, “Application of Forward Chaining Method, Certainty Factor, and Bayes Theorem for Cattle Disease,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 14, no. 1, hal. 365–374, 2024, doi: 10.18517/ijaseit.14.1.18912.
M. Rizki, F. Rahardika, B. Putra, dan L. Jupriadi, “Comparison of Accuracy Level of Certainty Factor Method and Bayes Theorem on Cattle Disease,” Ilk. J. Ilm., vol. 16, no. 3, hal. 343–355, 2024, doi: https://doi.org/10.33096/ilkom.v16i3.1943.343-355.
M. Sajid, T. S. M. Kaleem Razzaq Malik, Ahmad Almogren, A. H. Khan, J. Tanveer, dan A. U. Rehman, “Enhancing intrusion detection : a hybrid machine and deep learning approach,” J. Cloud Comput., vol. 13, no. 123, hal. 1–24, 2024, doi: https://doi.org/10.1186/s13677-024-00685-x.
J. Jaafari, S. Douzi, K. Douzi, dan B. Hssina, “Towards more efficient CNN ‑ based surgical tools classification using transfer learning,” J. Big Data, vol. 8, no. 115, hal. 1–17, 2021, doi: https://doi.org/10.1186/s40537-021-00509-8.
L. Alzubaidi dkk., “Review of deep learning: concepts, CNN architectures, challenges, applications, future directions,” J. Big Data, vol. 8, no. 1, hal. 53–74, 2021, doi: https://doi.org/10.1186/s40537-021-00444-8.
Jalu Nusantoro, Faldo Fajri Afrinanto, Wana Salam Labibah, Zamah Sari, dan Yufis Azhar, “Detection of Covid-19 on X-Ray Image of Human Chest Using CNN and Transfer Learning,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 3, hal. 430–441, 2022, doi: 10.29207/resti.v6i3.4118.
R. A. Tilasefana dan R. E. Putra, “Penerapan Metode Deep Learning Menggunakan Algoritma CNN Dengan Arsitektur VGG NET Untuk Pengenalan Cuaca,” J. Informatics Comput. Sci., vol. 05, no. 1, hal. 48–57, 2023. doi: https://doi.org/10.26740/jinacs.v5n01.p48-57
N. Abdelhady, T. H. A. Soliman, dan M. F. Farghally, “Stacked ‑ CNN ‑ BiLSTM ‑ COVID : an effective stacked ensemble deep learning framework for sentiment analysis of Arabic COVID ‑ 19 tweets,” J. Cloud Comput., vol. 13, no. 85, hal. 1–21, 2024, doi: https://doi.org/10.1186/s13677-024-00644-6.
N. T. Diba, N. Akter, S. A. H. Chowdhury, dan J. E. Giti, “BMI Prediction from Handwritten English Char acters Using a Convolutional Neural Network,” arXiv Access. Forum, hal. 1–7, 2024. doi: arXiv:2409.0258 4v1
A. Pandey, M. S. Teja, P. Sahare, V. Kamble, dan M. Parate, “Skin cancer classification using non ‑ local means denoising and sparse dictionary learning based CNN,” J. Electr. Syst. Inf. Technol., vol. 11, no. 36, hal. 1–23, 2024, doi: https://doi.org/10.1186/s43067-024-00162-0.
Y. Liang, Y. Ren, J. Yu, dan W. Zha, “Current trajectory image ‑ based protection algorithm for transmission lines connected to MMC ‑ HVDC stations using CA ‑ CNN,” Prot. Control Mod. Power Syst., vol. 8, no. 6, hal. 1–15, 2023, doi: https://doi.org/10.1186/s41601-023-00280-3.
A. Sarhan, R. A. Rahem, B. Darwish, A. A. Attia, A. Sneed, dan S. Hatem, “Egyptian car plate recognition based on YOLOv8 , Easy ‑ OCR , and CNN,” J. Electr. Syst. Inf. Technol., vol. 11, no. 31, hal. 1–17, 2024, doi: https://doi.org/10.1186/s43067-024-00156-y.
S. Montazeri, H. Jumakhan, S. Afrasiabian, dan A. Mirzaeinia, “Gradient Reduction Convolutional Neural Network Policy for Financial Deep Reinforcement Learning,” arXiv Access. Forum, hal. 1–8. doi: https://arxiv.org/abs/2408.11859
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Fajar Rahardika Bahari Putra, Muhammad Rizki Setyawan, Ahmad Ilham, Dimas Adi Suseno

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





